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Abstract. Subproblems in a problem frames decomposition frequently make 
use of projections of the complete problem context. One specific use of projec-
tions occurs when an eventual implementation will be distributed, in which 
case a subproblem must interact with (use) the machine in a projection that 
represents another subproblem. We refer to subproblems used in this way as 
services, and propose an extension to projections to represent services as a spe-
cial connection domain between subproblems. The extension provides signifi-
cant benefits: verification of the symmetry of the interfaces, exposure of the 
machine-to-machine interactions, and prevention of accidental introduction of 
shared state. The extension’s usefulness is validated using a case study. 

1 Introduction 

Architectural considerations often play a part during requirements analysis [4, 9]. For 
example, reliability, safety, and performance requirements can push towards or away 
from using a distributed architecture, which will most likely have a profound impact 
on the specifications derived from the requirements and can provoke changes in the 
requirements themselves. For example, a requirement to separately deliver compo-
nents found in a problem can give rise to a form of distributed implementation, e.g. if 
the traffic light unit described in [5] was designed along with the lights controller but 
also sold as a separate product. Even if the requirements do not ‘force’ a distributed 
architecture, one might wish to analyze the requirements of the system as if it would 
be distributed, as an aid to predicting architectural consequences of the choices made. 

This paper discusses how one might use problem frames [5] to structure and ana-
lyze problems that for whatever reason might have a distributed systems architecture, 
as opposed to a distributed software architecture. Problem frames analysis is about 
the problem as seen from the world. The problem (the requirement) is stated in terms 
of measurable and visible effects the system is to have on the world, not in terms of 
objects and classes visible within the software. 

The fact that a problem frames analysis always includes the real (physical) do-
mains suggests that the method could better support analysis of a distributed architec-
ture’s influence on requirements, compared to other methods such as KAOS [6] or i* 
[8] that do not naturally model the physical domains. In particular, problem frames 
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analysis always includes a machine, representing the computer that will run the soft-
ware that does the necessary transformations to solve the problem. On the other hand, 
it is possible that the machine might represent multiple computers, which would mask 
the distributed nature of the architecture. Finally, a problem frames analysis could 
create implicit dependencies on state shared between domains (e.g. between com-
puters), something that should not be permitted in a distributed architecture. This 
paper proposes an extension to problem frames to resolve these difficulties. 

The remainder of the paper is structured as follows. Section 2 presents an over-
view of problem frames. Section 3 elaborates upon the difficulties briefly presented 
above, and describes the proposed extension. Section 4 presents a case study to vali-
date the extension: a lighting control system which is an expanded version of the 
example in [2]1. Section 5 discusses the lessons learned from the case study, and 
section 6 concludes. 

2 Problem Frames 

2.1 Problems & Domains 

When using problem frames, problems are analyzed by describing the interaction of 
domains that exist in the world. The problem frames notation captures domains in a 
problem along with the interconnections between them. For example, assume that the 
requirements elicitation process for an automatic door produces the requirement when 
a door-open button is pushed, the door shall be opened for 30 seconds. The require-
ment states the problem – what is expected to happen in the world, when.  

Figure 1 illustrates one set of domains that could satisfy the requirement: a basic 
automatic door system with three domains, two of which are given and one of which 
is designed. One given domain is the door mechanism domain, capable of opening 
and shutting the door. The second given domain is the one requesting that the door be 
opened; this domain includes both the ‘button’ to be pushed and the human pushing 
the button. The designed domain is the machine, the domain that will bridge the gap 
between the other two domains in order to fulfill the requirement that the door open 
when the button is pushed. The oval presents the requirement to be satisfied. The text 
in the ‘folded paper’ boxes presents the frame argument, arguing how and why the 
requirement is satisfied. 

Every domain has interfaces, which are defined by the phenomena visible to other 
domains. Phenomena (e.g. events and signals) are visible: they can be observed. The 
notation shows the phenomena shared between two domains by labeling the line 
between the domains, then using that label in a box listing the phenomena. Phenom-
ena are listed by indicating the domain controlling the phenomena (the letters before 
the ‘!’) followed by a list of phenomena within ‘{‘ … ‘}’ characters. In Figure 1, we 
see that the Person + Button domain (PB) controls the event phenomena buttonDown 
                                                           
1 Although developed independently, the scenario resembles one found in [10]. The major 

differences are multiple control interfaces, incorporation of security requirements, and dy-
namic definition of ‘rooms’ for control purposes. 
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and buttonUp. The Door Control Machine (DCM) controls the Boolean phenomena 
motorOpen and motorClose (turn on and off the motor, set its direction) on the inter-
face between the machine and the Door Mechanism (DM). DM controls the Boolean 
phenomena doorIsOpen and doorIsClosed. 

Requirements are optative, describing desired behavior instead of existing behav-
ior [5]. Descriptions of the actual behavior of given domains (their phenomena: in-
puts, outputs, and states visible at their interfaces) are indicative; they describe an 
“objective truth” about the behavior of the domain. Indicative domain properties are 
normally expected to be constant, e.g. the same stimulus in the same context produces 
the same response. Consider the pushbutton in the domain shown in Figure 1; when 
the button is pushed, the circuit connected to the button is closed. Putting aside safety 
and security concerns, we can say that regardless of the state of the system, pushing 
the button will cause the phenomena to appear on the interface. 

Descriptions of the desired behavior of designed domains are optative. As the ma-
chine is considered a designed domain, the descriptions of phenomena controlled by 
it are optative. They describe characteristics that the requirements engineer desires to 
be true. The job of the software engineers is to produce software that converts these 
descriptions from optative to indicative. When all phenomena in a system are indica-
tive (and again putting aside many concerns such as safety, security, initialization, 
and the like), the system is complete. 

2.2 Requirements and Specifications 

According to Zave and Jackson [11], a requirement is an optative description of what 
the system is to do. Requirements describe a desired effect, or a goal. Jackson [5] 
describes a requirement as “the effects in the problem domain that […] the machine is 
to guarantee.” KAOS [6] defines requirements in terms of agents : a goal is “an ob-
jective the system under consideration should achieve”, and a requirement is a goal 
that can be achieved by a single software agent [7]. The i* framework definition that 
does not go quite as far: goals model the intentions of stakeholders [8].  

Again referring to Zave & Jackson, specifications are about phenomena. The 
specification of a domain is a description of its behavior in terms of the phenomena, 

Door  
Control 

Machine 

1. When the 
person pushes 

the button 

3. satisfying the 
requirement 

2. the door is opened,  
thirty seconds passes, 
then the door is closed 

Person + 
Button 

Door 
Mechanism 

C 

C 

Open door for 30 
seconds when 
button pushed 

a 

a: DCM!{motorOpen, 
                motorClose, 
                motorOff} b     DM!{doorIsOpen, 
              doorIsClosed} 
 
b: PB!{buttonDown, 
            buttonUp} 

Figure 1. Basic Problem Frames Diagram 
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indicative and optative, visible at its interface. The specification of a system is the 
collection of domain specifications that together fulfill the requirement(s). 

The distinction between requirement and specification is an important one. The re-
quirement described the effect desired in the world. The specification describes the 
interplay of phenomena that will achieve the desired effect. 

2.3 Problems, Subproblems, the Context, and Projections 

All but the most trivial problems will have multiple requirements. Using problem 
frames, the analyst proceeds by separating, decomposing, and composing require-
ments until the individual requirements each fit within a problem class. Each re-
quirement is described using an appropriate problem frame class; these are called 
subproblems. A context diagram summarizes all the subproblem diagrams, showing 
the domains in the union of the subproblems and the interfaces the domains share. 

Each subproblem is a projection of the context. All domains in the context re-
quired to describe a subproblem must appear in the projection; the domains in the 
context projection represent the world as seen by that subproblem. In some cases 
multiple domains in the context are projected as a single domain in a subproblem. 
Domains that are designed in one subproblem appear as given domains in another.  

Projections of the context (discussed at length in [5] and briefly but more formally 
in [3]) are very similar to projections in relational databases [1]. A projection of a 
relational database table is a new table containing a (potentially improper) subset of 
columns, and a projection of a problem context is a new context containing a subset 
of the domains in the problem. The context of a subproblem is a projection of the 
context of the problem, limiting the domains and/or phenomena in the subproblem to 
those needed to describe the subproblem. 

3 Problem Frames & Distributed Architectures 

In problem frames, one effect of choosing a distributed architecture is that machines 
in different subproblems (projections) may in fact represent different physical ma-
chines. These machines can communicate with each other (share an interface), result-
ing in visible shared phenomena. Although they might appear as the machine domain 
in the context, they must be treated as separate domains for analysis purposes. 

To detect this situation, one must identify the potential units of distribution. Each 
unit of distribution will be represented by at least one problem frame diagram (a pro-
jection of the context) showing the machine for that unit of distribution as a machine 
domain. Other units of distribution that participate in the analysis appear as causal 
domains in this projection. We say that the subproblem being designed is using the 
unit of distribution being projected as a causal domain. The subproblem (SP) being 
designed is called the userSP and the subproblem being used is called the usedSP. 

Figure 2 presents an example of a small distributed system, a heating control sys-
tem similar to the one described in [5]. It measures inside and outside air & water 
temperatures to anticipate the correct water temperature required to maintain the room 
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at the desired temperature. There are two subproblems, one representing the boiler 
controller and the other the heat control function of the room thermostat(s). The 
thermostat subproblem Maintain Room Temperature (the userSP), uses a projection to 
represent the furnace controller subproblem Operate Boiler Safely (the usedSP) to 
supply water at the needed temperature. Maintain Room Temperature does not care 
how the furnace is controlled. It wants heated water, and controls the heatTo(temp) 
phenomenon on its interface with Operate Boiler Safely to accomplish that goal.  

Similarly, Operate Boiler Safely contains a projection of Maintain Room Tempera-
ture, representing the thermostats problem. One must insert the projection of Maintain 
Room Temperature into the subproblem in order to show what triggers the boiler to 
supply hot water; the thermostat is part of the boiler’s world. The boiler does not care 
why it is delivering hot water or how the decision is made to ask for hot water. It 
merely supplies hot water when asked. 

The interactions in the example illustrate the specific form of decomposition that 
arises when considering distribution. By carefully tracing the phenomena through the 
projections, one finds that instead of controlling one of the causal domains in Operate 
Boiler Safely, Maintain Room Temperature is controlling the subproblem’s machine. 
When such a machine-to-machine interface occurs, we say that userSP is using 
usedSP as a service. In the example, Maintain Room Temp is using Operate Boiler 
Safely as a service to supply heated water. 

Several problems are exposed in the above discussion. One is related to symmetry: 
each subproblem contains a projection of the other, but there is nothing that indicates 
that the projections are symmetric, or even if they should be. There is nothing in ei-
ther diagram that directly exposes the machine-to-machine nature of the interfaces, 
hiding information that is important when considering particular concerns such as 

Boiler C a: M!{start,stop} 
 B!flameLevel() 
 B!chamberTemp() 
b: WT!temp() 
c: M!{start,stop} 
 P!isRunning 
d: MR!heatTo() 
e: WT!waterTemp() 

Subproblem 2 (userSP): Maintain Room Temp 

Machine Maintain Room 
Temperature 

Room Air 
Temp  
Sensor C 

a 

b 

a: M!heatTo(Temp) 
b: RA!airTemp() 
c: OA!airTemp() 
d: WT!waterTemp() 

Outside Air
Temp 
Sensor C 

c 

Operate Boiler 
Safely C

Figure 2. Heat control system as subproblems 
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interference, concurrency, and initialization [5]. Causal domains, (e.g. ‘Water Temp 
sensor’), appear in multiple subproblems, potentially introducing shared state and 
thereby preventing distribution in the recomposed solution.  

These difficulties can be resolved by inserting a connection pseudo-domain into 
both projections, making the connections between userSP and usedSP explicit and 
symmetric. The inserted domain is a pseudo-domain because it is fictitious, not repre-
senting something physical in the problem. It is a connection domain because it repre-
sents the point through which users of a service connect to the subproblem supplying 
the service. When inserted into a userSP, the pseudo-domain represents the projection 
of the domains a subproblem supplying a service intends to make visible (the ma-
chine and possibly some other domains). When inserted into a usedSP, the pseudo-
domain represents the projection of the subproblems requesting the service. We give 
these connection pseudo-domains the name projection domains. 

To better support validation of symmetry, we propose a strict definition/reference 
relationship between the one subproblem that defines the service and subproblem(s) 
that use the service. A defining occurrence is a projection domain in the subproblem 
that provides the service (the usedSP, Operate Boiler Safely in Figure 2). Within the 
usedSP, the defining occurrence represents all the subproblems that use the service. It 
acts as a causal domain within the subproblem. The phenomena on its interfaces are 
the phenomena made available by the service to the userSPs and phenomena that the 
service expects the userSPs to control.  

When a subproblem uses the service, the subproblem contains a using occurrence 
projection domain. The using occurrence acts as a causal domain within the using 
subproblem. It has the same phenomena on its interfaces as the defining occurrence.  

There are two properties that must be preserved between a using occurrence and 
its defining occurrence. The first is completeness: all phenomena appearing on an 
interface of the using occurrence must appear on an interface of the defining occur-
rence (or perhaps said to be optional, a possibility not further discussed here), and 
vice versa. The second is directionality of control of phenomena: all phenomena con-
trolled by the using occurrence must be controlled by a domain on one of the defining 
occurrence’s interfaces, and all phenomena controlled by the defining occurrence 
must be controlled by some domain sharing an interface with the using occurrence. 

A defining occurrence is indicated on the problem frame diagram by a projection 
domain with type D (Defining). The defining and using occurrences are connected by 
name; the name of the defining occurrence must be unique across the set of subprob-
lems. A using occurrence is indicated by a projection domain with type U (Using).  

Figure 3 presents the heating control example from Figure 2 again, this time using 
projection domains. A defining occurrence is added to subproblem one, Operate 
Boiler Safely. This defining occurrence, Operate Boiler, controls the heatTo phe-
nomenon on the interface between it and the machine. The waterTemp phenomenon 
is on the interface between the defining occurrence and the Water Temp domain, 
controlled by Water Temp. Subproblem two, Maintain Room Temp, contains a using 
occurrence standing for the boiler operation service. The using occurrence is con-
nected by name to the defining occurrence. The using occurrence has the same phe-
nomena on its interface as the defining occurrence, preserving completeness. The 
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using occurrence controls 
the waterTemp phenome-
non and the defining oc-
currence controls the 
heatTo phenomenon, 
preserving directionality. 

The use of projection 
domains satisfactorily 
resolves the difficulties 
listed this section. All 
interfaces are completely 
symmetric; all the phe-
nomena that a using oc-
currence can use must be 
found on an interface on 
the defining occurrence 
and vice versa, and it is 
possible to verify this 
symmetry automatically. 
Phenomena that might 
lead to shared state prob-
lems pass through the 
projection domains. The 
defining occurrence exposes the machine-to-machine nature of the communication 
and indicates that the subproblem is to be considered a unit of distribution.  

4 The Lighting Control System Case Study 

The lighting control system must conform to the following rough problem statement: 
− The system consists of switches and lighting units (lights) associated with a room. 

When a switch is actuated, the lights in the room must be turned on or off. 
− Switches are up/down momentary contact: up turns the lights on and down turns 

the lights off. 
− A master control panel must be included, indicating the state of the lighting units 

in each room. The indicator on the panel shows green if lights are one, otherwise 
the indicator does not glow. The state of the lights can be changed using the panel. 

− The control panel and lights in ‘secure rooms’ are to be usable only by people 
with an appropriate level of authorization. Users carry an identity card (a prox-
imity badge) that is read by a proximity reader either embedded in or installed 
next to a switch. Lack of a card means the person has the lowest level of authori-
zation possible. The system must record who operated the lights in a secured 
room. A person who lacks authorization may not change the state of the lights. 

− All light on and off actions must be printed on a printer in the control room. If this 
printer is not working correctly, an alarm of some kind must be given. 

Figure 3. Heat system with projection domains 

Subproblem 1: Operate Boiler Safely 

Machine 

a: M!{start,stop} Boiler C

Pump C

a  B!flameLevel() 
Operate 
Boiler 
Safely  

 B!chamberTemp() 
b: WT!temp() c 

WaterTemp
Sensor C

b c: M!{start,stop} 
 P!isRunning 
d: OB!heatTo(temp) 
e: WT!wTemp() 

Subproblem 2: Maintain Room Temp 

Machine 
Maintain Room 
Temperature 

Room Air 
Sensor C

a 

b 

a: M!heatTo(temp) 
 OB!wTemp() 
b: RA!airTemp() 
c: OA!airTemp 

Operate Boiler 

Outside Air
Sensor C

c 

Operate 
Boiler 

d 

e 

D

Defining occurrence 
 Using occurrence 

U
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− The system must monitor 
the lighting units. If a light-
ing unit is not in the correct 
state (e.g. off when it 
should be on, or not re-
sponding at all), the system 
must try to correct it. If the 
correction fails, the system 
must indicate this fact by 
changing the indicator on 
the master control panel of 
the room containing the 
failing lighting unit to show 
red and logging on the 
printer discussed above. 

Master Control 
Panel 

Light units 

− Failure of any single com-
ponent in the system shall not affect more than one floor of the building. 

4.1 The Light Control Context Diagram 

The context diagram must take into consideration several important parts of the prob-
lem that the problem statement does not make explicit. For example, the relationship 
between people and badges must be made clear. The badge identifies the person to 
the system, and establishes the person’s privileges. The privileges determine whether 
the switch actuation is to be honored. Therefore, the person, the badge, and the privi-
leges are important parts of the problem and should be included in the context dia-
gram. After doing so, we have the diagram shown in Figure 4. 

The problem statement contains a requirement stipulating that the eventual imple-
mentation must be fault tolerant. Two choices are available: redundancy and distribu-
tion. This analysis will explicitly accommodate distribution. 

4.2 Subproblem Diagrams 

4.2.1 Initial Thoughts. There is nothing physical that relates a switch to the lights it 
controls or to the logical room that contains the lights. Equally, there is nothing 
physical that relates a badge reader to a switch or to a room, or relates a badge to a 
person. It seems that the notion of room is a unifying concept fundamental to the 
problem, and perhaps the problem should be decomposed along that dimension. 

Actuating a switch is a request that the state of the lights in a room be changed. 
From the user’s point of view (and the switch’s as well), the lights in a room are 
treated as a unit. It makes sense, therefore, to incorporate the notion of room into the 
switch phenomena along with the up and down phenomena. A method to map 
switches and lights to rooms is required. Following this line of reasoning further, it 
becomes clear that the badge and privilege determination are separate from the switch 

Switches Badge 
Readers 

Audit 
Printer 

Audit 
Alarm 

Machine Privileges 

People Badges 

Figure 4. The context diagram 



www.manaraa.com

actuation. A badge is associated with a person and privilege is associated with a per-
son/room pair, meaning we need another map. We thus end up with the lexical do-
mains People  Privileges, Switches  Rooms, and Rooms  Lights, where the 
symbol  is read as maps to.  

One of the fundamental problems, controlling the lights, seems to be a commanded 
behavior problem. People are commanding the lights using the switches and the mas-
ter panel. However, it appears that the master panel presents enough differences from 
use of the ‘normal’ switches to justify separating the two into distinct sets of subprob-
lems, Switches & Lights and Master Control Panel.  

We must next consider the Audit problem, which responds to the parts of the prob-
lem statement requiring verification that the lights are in the state that they should be. 
The last problem is the maintenance of the lexical domains. 

Please note: to simplify diagrams, most phenomena are not shown in the subprob-
lem diagrams. Also, frame arguments run clockwise from the requirement oval.  

4.2.2 Switches & Lights Problem. Accepting this first analysis, we start by connect-
ing the switches to the lights in the rooms that the switches control. This is a com-
manded behavior problem. The requirement, derived from the system requirements 
and roughly stated, is if the user actuates a switch, then the lights in the room(s) as-
sociated with the toggle be put into the state indicated by whether the toggle was 
lifted or lowered. Clearly we need to associate both switches with rooms and lights 
with rooms. Two lexical domains will be used for this purpose; for this paper we 
assume that they will be implemented using a reliable distributed database and do not 
further consider their reliability and distribution properties. We also decide to sepa-
rate interpreting the switches from controlling the lights to provide appropriate units 
of distribution to meet the reliability requirement. The solution would seem straight-
forward, except that we must account for security. 

The security requirement is, again roughly stated, if a room is secured, then only 
people with the appropriate permission can cause a state change in the lights. People 
are identified by badges. Unfortunately, badges do not indicate who is in a room, but 
instead indicate who is near a reader. We can reduce the complexity of determining 
who is ‘in’ a room by introducing a model that uses badge reader events to maintain a 
database of who is ‘in’ a 
room. This model will be, in 
effect, the interface between 
the lights control problem 
and the badge reader prob-
lem. Enter and exit events 
generated by the badge 
reader give the information 
needed to build the model. 
A person is considered ‘in’ a 
room and able to control a 
room between enter and exit 
events. The model is used 
by other subproblems that 

When a badge enters or 
exits the reader’s range 

and the reader is associ-
ated with a room 

and the 
badge is 

associated 
with a person

satisfying the 
requirement 

then mark the person as 
able to control the room

Badge 
Reader C 

Machine

Badge  
Room X

Badge  
Person  X

Person  
Room X

Maintain  
Person Room 

Model 

Figure 5. Building the person  room model 
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When a switch in a 
room is actuated 

and the room is not 
secure or a person is 

in the room 

and is author-
ized in that 

room

satisfying the 
requirement 

then the opera-
tion is permitted, 

Pass it on. 

Enforce 
security D 

Machine

Units in 
room U

Person  
Privs  X

Person  
Room X

Enforce  
Security 

Figure 7. Enforce security 

a: CL!on(room) 
 CL!off(room) 
b: M!on(r, p) 

M!off(r,p) 

a 

b 

verify permissions and en-
force security.  

Following this route, we 
find we have two subprob-
lems, one to build the Per-
son  Room model and one 
(or more) to use it. Figure 5 
presents the first subproblem 
– constructing the model. 

We now turn to the sub-
problems to control the 
lights. The first subproblem, 
named Honor Switches and 
shown in Figure 6, watches 
for switch events, determines 
which room is being con-
trolled, and then passes appropriate events to a subproblem that verifies security. To 
ensure that the subproblems are separable and distributable, the controlled domain is 
a service, indicated by the using occurrence named Enforce Security, (see below). 
The phenomena passed to Enforce Security are shown on the diagrams; they are 
on(room) and off(room). Note: Figure 6 show a notational convenience used 
throughout this paper: names of projection domains are shown in italics as well as by 
their definition-type letter (D or R). 

Figure 7 shows the required behavior problem Enforce Security that Honor 
Switches uses as a service. Enforce Security accepts the on and off phenomena pro-
duced by Honor Switches, then checks to see if the room is secure. If the room is 
secured (it is in the Person  Room model, perhaps with no people in it) then verifies 
that at least one person near a panel for the room is permitted to control the lights for 
that room. If permitted or if the room is not secured, it passes the events along 
through the using occurrence Units in room, defined in Control Units in Room (Figure 
8). The phenomena passed along are of the form on(room, person) and off(room, 
person). 

We end with the diagram 
in Figure 8, Control Units in 
Room where the defining 
occurrence Units in room is 
found. This is a commanded 
behavior problem, looking 
up which lights are associ-
ated with the room and con-
trolling them appropriately. 
It informs the Maintain MP 
Indicators subproblem (dis-
cussed in the next section) 
what it did using the service 

Machine 

Figure 6. Honor switches – lights control with security 

Enforce 
security U 

Switches 

C 

Switch  
Room X 

Honor 
switches 

When a switch is 
actuated 

and if the 
switch is 

associated 
with a 
room 

then the 
security 

subproblem 
is told to 

change the 
state of the 

lights 

satisfying the 
requirement 

a 

a: M!on(room) 
 M!off(room
)
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indicated by the using occur-
rence Set MP indicator. 

4.2.3 The Master Control 
Panel. The Master Control 
Panel problem is decom-
posed into three subprob-
lems. The first, shown in 
Figure 9, is an information 
display problem in which the 
indicators are set appropri-
ately and the audit trail is 
maintained. It contains the 
defining occurrence Set MP 
indicator through which it 
accepts on and off phenom-
ena from the Control Units in 
Room subproblem.  

The second subproblem 
concerns controlling the 
lighting units using the mas-
ter panel. Shown in Figure 
10, it is a commanded behav-
ior problem where pushing a 
button associated with a 
room inverts the state of the 
lights in that room. It uses 
the service represented by the 
using occurrence Units in 
room (see Figure 8) to con-
trol the lights. 

The third subproblem is 
concerned with master panel 
security, and is a required 
behavior problem. As this 
subproblem is almost identi-
cal to the Enforce Security 
problem presented in Figure 
6, the subproblem will not be 
further discussed.  

4.2.4 The Audit Subprob-
lems. The Audit problem is 
decomposed into two infor-
mation display subproblems 
and one commanded behav-

Machine 

Figure 10. Master control panel buttons 
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When the state of lights 
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the room 
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ior subproblem. The first 
information display sub-
problem, Audit lights unit 
shown in Figure 11, scans 
the lights in each room to 
determine if they are in the 
proper state. The fault indi-
cator on the MP is lit via the 
projection domain MP fault 
indicator if a unit is not in 
the correct state.  

 

The information display 
subproblem containing the 
defining occurrence MP 
fault indicator is similar to 
Figure 9, as is the subprob-
lem defining the projection domain Audit. These subproblems are not further dis-
cussed. 

The job of the commanded behavior problem is to put the lights into the state they 
should be in. It is identical to the information display problem in Figure 11, except 
that it would use the service represented using occurrence Units in room, defined in 
Figure 8. 

4.2.5 The Lexical Domains. Several lexical domains have been used in the above 
diagrams. The creation and maintenance of each of these is described by a simple 
workpieces problem frame. The subproblems are all very similar and have solutions 
well described in [5], and they won’t be further discussed. 

5 Discussion 

There are several issues that were not resolved by the use of projection domains in by 
case study. Some of these derive from the particular concerns discussed in [5]. 

5.1 Distribution 

This paper argues that projection domains help with ensuring that a system can be 
distributed, and the case study supports this assertion. There are, however, some cases 
where projection domains are not sufficient. For example, the existence of hidden 
shared state could force merging. A similar question must be asked about lexical 
domains to determine if they can be used in a distributed fashion (for example as a 
distributed database).  

As problem frames phenomena are considered ‘shared’, one could argue that dis-
tribution is never allowed because it breaks the simultaneity assumptions of problem 
frames analysis. Ignored connection domains create similar difficulties. For example, 
guards to be evaluated in one subproblem could be added to events in another sub-
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problem, creating an implicit connection domain – the guard itself.  Use of projection 
domains does not facilitate or prevent such uses of guards. 

It would be very nice to have a better understanding of, and a way to specify, the 
cases that force merging of the machines. Indicating the simultaneity and concurrency 
assumptions at an interface would help enormously. 

Projection domains assist with determining whether distribution is acceptable by 
specifying the interface between a defining occurrence and its using occurrences. 
Indicating the cardinality at these interfaces as described in [2] would provide more 
information, as cardinalities other than 1:1 imply that some support for concurrency 
and distribution was intended by the analyst. 

5.2 Concurrency 

Concurrency problems exist on at least two levels. The first is rather large, exempli-
fied by lexical domains and models. There is an inherent concurrency problem be-
tween a machine that maintains a lexical domain and a machine that uses it. The prob-
lem manifests itself as inconsistent or partial state. It would seem that this sort of 
problem is amenable to solution, at least at the phenomena level, by applying transac-
tion semantics to the phenomena. 

The second level can be illustrated by looking at the example presented in this pa-
per. It is perfectly permissible to have multiple switches for the same room. The 
switches and lights in a room might not be controlled by the same computer, leading 
to potential race conditions as the switches are actuated. Clearly the nature and sever-
ity of the concurrency problems depend on how the system is distributed. 

5.3 Initialization 

Projection domains do not directly solve initialization concerns related to distributed 
systems. Some of these initialization concerns might be: 

5.3.1 What about partial power failures, where parts of the system lose power 
and parts do not? There are several sub-questions that might arise while discussing 
this point. Does a partial power failure trigger a safety concern? Can power be lost to 
parts of the control system, and if so what is to occur while power is lost and when 
power is restored? The problem is complicated by use of a distributed implementa-
tion, as different parts of the system could be ‘off’ at any given time. 

5.3.2 The audit process cannot run until system is initialized. This is an example 
of initialization sequencing. The audit system depends on having the various lexical 
domains correctly initialized and the lights in a known state. The point after which 
auditing can start must be determined, then a required behavior problem frame must 
be added to express the requirement. 

5.3.3 Lights added to a room may be in an incorrect state. A maintenance engi-
neer may repair or replace a lighting unit while the system is running. Doing so raises 
concurrency concerns (maintenance of the lexical domains), correctness concerns (the 
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newly installed light is off when it should be on and vice versa), identities concerns 
(movement of units from another room), etc. 

5.4 Identities 

There are many identities concerns. Most of them are recognized by the inclusion of 
the lexical domains (the  maps). Some, however, cannot be satisfied with the do-
mains. For example, a switch might be added to the system a long time before it is 
associated with room. Similarly, a lamp might be added long before it is associated 
with a room. Badge readers present a similar problem, as does maintaining the corre-
spondence between badges and people. 

Another identities concern that will provoke changes to the solution comes from 
the assumption that switches are in rooms and badge readers are in rooms, therefore 
someone in the room is actuating a switch. This assertion is clearly incorrect if multi-
ple badge reader/switch pairs are associated with a room. We can confuse the identity 
of a person at the switch with a person at another switch for the same room. The solu-
tion is to map both badges and switches to a pair (room, location) instead of to room. 
The diagram in Figure 5 would be changed to build a Person at Location model. The 
diagram in Figure 10 would be changed to use the Person at Location model. Finally, 
the diagram in Figure 6 would be changed to use a Switches  Rooms/Location map. 

5.5 Interference 

There are interference or concurrency questions that projection domains do not auto-
matically answer. For example, without care the Audit machine can busily undo Honor 
Switches actions. Interactions between the audit information display and audit setting 
the correct light state could make panel indicators flash. If two switches control the 
same room and one switch commands off while the other commands on, individual 
lights could be left in conflicting states. Inconsistent states while maintaining the 
lexical domains is another source of errors. 

6 Conclusions 

The case study showed that projection domains help with modeling machine to ma-
chine interfaces, something that is necessary when a system’s implementation is to be 
distributed. Projection domains helped keep the subproblems focused while specify-
ing how the subproblems interact. They preserved completeness and directionality, 
providing a way to verify that all phenomena used and controlled by the defining 
subproblem were controlled and used by the using subproblem(s), and vice versa. 
They better encapsulated the service, as the phenomena visible at the projection’s 
interface were defined by the defining occurrence and not by the subproblem using 
the service. They also provided a form of continuous composition by specifying the 
interface between a defining occurrence and its using occurrence(s). 

Although projection domains resolved some problems encountered when model-
ing distributed systems, the case study showed that more remain. Future work will 
focus on ensuring consistent use of lexical domains by multiple subproblems, verify-
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ing the semantics of shared phenomena and their parameters, and describing and 
verifying the concurrency properties of domains and subproblems. 

The extension proposed in this paper could be helpful during decomposition even 
when the result will not be distributed. For example, analysts working on different 
subproblems may wish to formalize how the subproblems are composed, to ‘pre-
declare’ projections, and to reduce the number of domains included a projection by 
combining them into a single projection domain. 
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